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Difference Methods for Parabolic
Partial Differential Equations

5.1 INTRODUCTION

A number of mathematical models describing the physical systerns are the
special cases of the general second order partial differential equation

2 2 2

Ll = 4 %+23%+C%’;——H(x,y, u,% : %) =0 (51
Equation (5.1) is called semilinear if A, B and C are functions of the inde-
pendent variables x and y only. If 4, Band C are functions of x, y, u, 0u/ox
and du/dy, then (5.1) is termed as quasilinear.

When 4, B and C are functions of x and y, and H is a linear function of
u, du/dx and du/dy then (5.1) is called linear. The most general second order
linear partial differential equation in two independent variables x and y can
be expressed as

F7) 92 02 d
Alr, 3555 +2B(x, ) gz +C ) g+l M) g
+E(x, y) %Jr F(x, y)u+G(x, y) = 0 5.2)

If G = 0, the partial differentia’ quation is termed as homogencous, other-
wise it is called inhomogeneous. v
A solution of (5.1) or (5.2) will be f the form

u = u(x, y)
which represents a surface in (x, y, u) space called the integral surface. If on
the integral surfaces there exist curves across which the partial derivatives
Pu/ox?, *u)dxdy and d2u/dy? are discontinuous or indeterminate, the curves
are called as characteristics. Let us assume that the solution to (5.1) is to pass
through a curve I whose parameteric equations are

x = x(5), y = ¥s), u = u(s) (5.3)
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We also assume that at each point (x, y, u) of I the partial derivatives gu/dx
and du/dy are known. Since the solution will be of the form u = u(x, y), at
each point x and y of I" we have

du  Odudx OJudy

& = ixds Toyds (54
For dulox = p = p(x, y) and du/dy = q = q(x, y), we have

dp _ dpdx r')p dy

ds ~ Oxds 9y ds G-5)

dqg _ 9dqdx  dqdy (5.6)

ds — OxdsTayds
Keeping in view the fact that in Equations (5.1), (5.5) and (5.6), the quan-
tities 4, B, C, H, dx/ds, dy/ds, p, q, dp/ds and dg/ds at each point of I" are
known, these equations can be treated as three simultaneous equations for
the unknowns 02u/dx?, d’u/oxdy and d2u/dy? at each point of I'. The solu-
tion of these equations exists and is unique, unless the determinant

A 2B C

s dy
ds ds =0 (5.7)
o b b
ds . ds
which may be simplified to give
dy\* ,,dxdy ( ) .
y (ds) 282% ¢ —0 (5.8)
or dy _ —[B;{:\/BZ—ACJ (5.9)
dx
Equation (5.9) can be scparated into two equations
Ady—(B+A/B*—AC) dx = 0 (5.10)

Ady—(B—/B*~AC)dx =0
whose solution can be represented as
Vi(x, y) = constant, V,(x, y) = constant (5.11)

Thus, there are two families of curves given by (5.11) along which the second
order partial derivatives will not be determined in a definite and finite man-
ner. The curves are called the characteristics and they are either real and dis-
tinct or real and coincident or imaginary according-as

—AC > 0, B2—AC = 0 and B2—A4AC <0 (5.12)

The partial differential equation (5.1) or (5.2) is said to be of hyperbolic type
at a point in the xy plane if two real distinct families of characteristics exist
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at that point or B2—AC > 0; to be of parabolic type, if one real and coin-
cident family of characteristics exist or B*— AC = 0; and to be of elliptic
type if no real characteristics exist or B1—-AC < 0.

In the general linear case, the coefficients 4, B and C may depend upon
position, then the type of the equation may also depend upon position. In
the quasilinear case, the type of the equation may not only depend upon the
position but also upon the behaviour of the solution at that position. How-
ever, if A, B and C are constants then the equation is of one type throughout
the xy plane.

The well known examples of the three types are:

Heat flow equation

0 o2
35 - 5 (5.13)
which is of parabolic type.
Wave equation
o%u 0%
T W (5.14)
which is of hyperbolic type.
Laplace equation
u R
a—xz"“a—yl;‘ =0 (5.15)

which is of elliptic type.

The parabolic and hyperbolic type of equations are either initial value pro-
blems or initial boundary value problems whereas the elliptic type equation
is always a boundary value problem. The bouridary conditions can be one
of the following three types.

(i) The Dirichlet or first boundary condition. Here, the solution is prescribed
along the boundary. If the solution takes on zero value along the boundary,
the condition is called homogeneous Dirichlet otherwise it is inhomogeneous
. Dirichlet condition.

(ii) The Neumann or second boundary condition. Here, the derivative of the
solution is specified along the boundary. We may also have homogeneous or
inhomogeneous Neumann boundary conditiodgs. ,

(iii) The third or mixed boundary condition. Here, the solution and its deri-
vative are prescribed along the boundary. We may also have homogeneous
or inhomogeneous mixed. boundary conditions. ,

We assume throughout our discussion that our mathematical problem is
well posed, i.e. if its solution exists, is unique, and depends continuously on
the given data. The most common method of solution of partial differcntial
equations is the finite difference method. We superimpose on the region of
interest a network which is generally of the rectangular (square) form. The
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partial derivatives in the e%:';‘i () exp (v =1 B,mh) : (5.22)
cénverting the different -
“di'ﬂ'erence equation ary real or complex number.

- $he intersections (n~uations, the sum of independent solutions is a solution,

sl n We consider a single term

én = A £n olemh (5.23)

where i = \/:1, B is any real number and A is an arbitrary constant. In
order that the original error e/® shall not grow as n increases, it is necessary
and sufficient that

€)1 <1 T (5.24)

The equation (5.24) gives the required condition for the stability of the diffe-
rence scheme. - '

This method of stability analysis is known as the von Neumann method or
the finite Fourier series method. Substituting (5.23) into (5.20) and simplify-
ing, we obtain

£—1 = p(e!Ph—2 4 ¢~I8h)
= 2r(cos Bh—1) =—4r sin? (”2—”)
The conditions (5.24) yield
-1 < 1-4rsin? (%’-’) <1

The right inequality is satisfied trivially; the left inequéility will be satisfied
for all B if, and only if, :

r<i1/2

Thus r = 1/2 separates the region of stability, where errors decay, from the
region of instability, where some errors grow.

Next we consider the difference schemes for the general heat flow equation
of the form

5 = L*u (5.25)

where L*u is a differential operator in u, which contains only partial deriva-
tives with respect to the space coordinates X1, X3, -+, Xsand coefficients which
may either be constants or functions of both space and time variables. We
will only be interested in (5.25) when, together with appropriate initial and
boundary conditions, it consitutes a well posed problem.

In general, the unknown u(x, )=u(x,, x,, ..., xs, 1) may be either a scalar
or a vector function. The solution of (5.25) is required in an arbitrary region
R x[0, T] with suitable boundary conditions on ORX[0, T] where R is nor-
mally a closed region in x;, X;, ..., x, space, 3R is the boundary of R, and
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[0, T] is the time interval 0 < ¢ < T. Now, We of by u". An implicit dif-
rectilinear grid with grid lines parallel to coordime grid point at time grid )

k in space and time directions, respectively. 11) for (5.33) becomes
The grid times are given by t = nk,n = 0, 1, 2, ..
The set of mesh points on dR (i.e. those points which a. (5.36)

tersection of the grid lines with the boundary d.R) will be « )

The mesh points in the region R form the set Ra. The space ne.

nth time grid constitute the nth layer or level. Let u(x;, X3, -++, Xa, tat;) Q€ru
the solution to (5.25) at the (n--1)th layer. Then, since

F]
— == -l -
e k=t log (1-p1)

it follows that (5.25) becomes
—k~'log (1=pau(x, ther) = L*u(x, taty) (5.26)

where p; is the backward difference operator.

This is a discrete analogue of (5.25) and our difference schemes will be

approximations of (5.26). The construction of our difference schemes will in-

volve two distinct parts. First, we approximate in the time direction, i.c. a

function F(p,) is constructed such that
k= [~log (1 =p»)—F(p)] = (k™! V}"“) (5.27)
= 0(k)

where o, = 1. Next, approximation in the space direction, L} is obtained
such that

[L*—h=* Li]u (%, tsr) 5 O (h) (5.28)

where o, is some integer and o3 2> 1, Substituting (5.27) and (5.28) into (5.26), -
we obtain

K F(Pu(x, trar) = ho*Lau(x, tasr)+O(k*+h%) = 0 (5.29)

or F@)u (%, tr) = g L 4%, tavs, (530)

= O(kn+l+k h*)

The first nonzero term on the right side of (5.30) is called the principal part
of the local truncation error. Neglecting the trunction error in (5.30), we
obtain the difference scheme at a nodal point (x, t»+) as

F(pou™' = rLyu™ = 0 (5.31)

where u"tl is an approximate value of u(x, ¢) at ¢ = t,4(. The difference
scheme (5.31) will have a truncation error of 0(k°+-A%). The quantity r=k/h®s
for some integer o, is known as the mesh ratio. If we write (5.31) as a diffe-
rence scheme which involves only one grid ﬁoint at time grid 1 = (n+41)k,
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u(1,t)=0
u(O,H=0

o-X-»

0 1 2 3 L
] 3 1

1 3
4 2 4

Fig. 5.1(a) Representation of nodal points

Now we obtain,
for n=0m=1,23;

ul = %— (u3+410+ul) = —16-(0+4 sin %——i— sin-%-)
uj = .6380711
" = —é—(tl‘,’+4ug+u‘§) = —é—-(sin —4"— +4 sin -;—-i- sin %5.’).
uy = 9023689
1_1040 o_l'"4:'§f
wy = —6—(142+ 1d+ug) = 3 sin 7—{— sin 2
ul = .6380711
for n=1m=1,2,3;
3 = & G-+ ul+uh) = — (4(6380711)+.9023689)
12 = 5757755
W = -é—(u}+4u;+u;) = %—(.638071I+4(.9023689)+.6380711)
u2 = 8142696
W= —é— (ul+4ul+ul) = —(1’- (.9023689+ 4(.6380711))+0)
w3 = 5757755

The solution u(x, t) is symmetric about the line x = 1/2.

5.3.2 Multilevel explicit difference schemes _
The general three level explicit difference scheme for 1¥83) will involve
seven points (see Figure 5.1b) and may be written as

(1= p) NP+ mipD) untt = 3%, (5.39)
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or (1.+"'l)“:'n+ = [1+2T|+r(1 —y )8l = (11— ry 3! (5.40)

where 71 and 'y1 are arbitrary parameters. The truncation error of (5.40) is
given by

= (Ze Iy trer) = PO = VP Ju(xm, 1) (5.41)
where u(xm, t») satisfies (5.33)
%
‘ R
E 3 {n41)th Level
- . g nth level
R -
*E J(n-1)th level
SN EESTRER NN IINNETE NN -
0 a m-1 m M4+ b x

Fig. 5.1(b) Grid points of the three level explicit methods
Expanding (5.41) in the Taylor series in terms of u(xm, tx) and its deriva-
tives and rcplacing the derivatives involving ¢ by the relation

ortay(x, t) _ OP*2u(x, t)
T oxPo1r ~  OxPtu

we obtain T = k[('r SRPERLE ) h’]( oy )

R R VP 0%
+k ["2'( =Y+ )" +12"""’2 360h‘](6x6)m+ -
(5.43)

Thus, we find that the difference scheme (5.40) has the truncation error of
order

(i) (k+h?) if y1 and 7| are arbitrary,

(5.42)

(i) (k341 if 77491+ -li- = 0 and either ¥} or ; is arbitrary,

P | . . g
(iii) (1*) if 7} 4y + 7——ll2_r = 0 and either ¥| or 7 is arbitrary. (5.44)
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Alternatively, we may write (5.56) as

1 1 1 1 1Y)\
F(rag) ot =t - (2 e g (15 )
For the values 7; = 0 and y; =—1/2+1/12r, we get the difference formula

1
n+l — 82 - -
punt! = rsx[ 1 ( 5> +12r) Vz] (5.57)
or yntl = (—7- -3 u"+——(3r— -]—) (i tup,)
m 6 m 6 m—1 m+1

— (- ) Gzt -2

which is stable if 0 < r < 1/3. The truncation error becomes 0(h5)|f r=1/10.
Further, we choose

6w = (+ X (~1r7n lpet Xy miwt ) (5.58)

in (5.34) where 7, and y, are arbitrary parameters. Thus our difference
scheme (5.34) subject to (5.58) is a (g-+2)-level scheme for (g = ) with
truncation eror of 0(k+A?). Table 5.1 presents the Padé approximations of
[-(1=p) log (1—p:)] through ¢ = 3 and s = 2.

From Theorem 3.1, we know that the accuracy of the stable (g 1)-level
explicit difference scheme (5.34) cannot exceed g in the time direction. The
values 7 = —5/6, ¥} = 1/3 give a three level explicit difference scheme

1
(Vr"%‘?f ) urt! = r3? ( 1——3—73 )u,’,’,

which has truncation error of order (k3-+42?), and it is an unstable scheme.
We now give a few (g+2)-level schemes of order (k%*!+h?). The values
7, = 0,1 < p < g, give the Adams-Bashforth type difference schemes

Pt = rsg( 1+—2— V,+1—273+§— V,’+.-.) up, (5.59)
A four level difference scheme is given by
1 5
puntt = ré2 ( l"l‘T Vt+'1'2‘7% ) Un
= 75 323~ 16" 4 Sus )

If we choose the parameters =0 2<p<qand yi = 0, we obtain
multilevel difference scheme of the Adams—Nystrom type

(v.——z—vﬁ)u~+l=r82[1+om+ Lol Bt u
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0 0510 20 30 Lo '

Fig. 5.2 Stability region to the left of the boundary line
of the explicit method (5.66)

5.3.4 Two level implicit difference schemes

A general two level implicit difference scheme involving six points
(Figure 5.3) is obtained if we write (5.36) as

A=yP) 'pumt = r[(14082)=182] 2! (5.71)
which on simplification becomes

[1+@@=r(1—y))8% uit! = [14(o+ryy) 83 o, (5.72)

14

jj t (n41)th lever
nth level

0 m-1 m m+!

Fig. 5.3 Grid points of the two level implicit methods
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where v, and o are arbitrary parameters. The truncation error of formula
(5.72) is given by

Tm = [14+(o—r(1=1)) 83 u(xm, tag1)—[14+(0+ry,) 87 (X, )
=i k(n= g ) (o= m) 2] G+ [5(n-F)
1

1.1 1(._1 «')_)
+7(° ?*’6‘?*) ’+rz(“ 30)]" (w PUSSIN CRE)

We find that the truncation error is of
(i) O(k+h?), for v, and o arbitrary,

(i) O(k2+11), for v, = - and o % L

1 1 1 1
2.4 74 Py o= — = — = = —4 —
(iii) 0(k2+h%), for v, > and o 3 0r @ 0, and ¥, >t 5
1 1 1
: 6 = g = 2
(iv) O(h) for v, R W 5
The characteristic equation of (5.72) after substituting ¢ = (1+2)/(1—2)
becomes

[1 — 40 sin2 %é+2r(1—2'y.) sin? %’—1] z+2r sin? %’—' =0 (5.74)

and r =

From the Routh-Hurwitg criterion (1.43), we get
1—4o sinz‘ %h-i-2r(l —-2v)) sinz-B2—h >0
and 2r sin? ﬁ—;‘ >0

Since 0 < sin? Bh/2 < 1, the above conditions will be satisfied if

1—4042r(1=-2y)) > 0 ) (5.75)

The stability region is shown in Figure 5.4. The shaded part o < 1/4 and

71 < 1/2 represents the region of stability for all values r > 0 (uncondi-

tional stability). The unshaded region o < 1/4, y, > 1/2 gives the region of
stability for 0 < r < (1—-40)/2(2y;—1) (conditional stability).

For various values of o and y;, we get the following unconditionally
stable methods:

(i) The values o = 0, y, = 0 give the formula

P = 84t (5.76)

which is called the Laasonen formula.
(i) The values ¢ = 0, y, = 1/2 give the Crank-Nicolson formula

V‘u:;f'l = .%_8‘\2‘ (u:;"l-*.u":') V (5.77)
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0 3
3

Uncondlfnnolly stable] Conditionally stable
0
\\\\\\\\\ <'< Ty 2(2v\-1)

Fig. 5.4 Stability region for two level implicit methods

(iii) The values 0 = 1—12, = —;—- give the' Crandall formula
1
(1+ ~ sg) P = 588 (i ) (5.78)

Example 5.2 Use the Crank-Nicolson method to determine the numerical
solution of the initial boundary value problem

Uy = Uxx
u(x, 0) = sin mx, 0<x<l
u(0,1) = u(l, 1) = 0, t20
The Crank-Nicolson method is given by
" 21 = ul ) = o200 = P r

where r = k/h? and, k and h are step lengths in ¢ and x directions res-
pectively. We choose, # = 1/4and r = 1/6. The nodal points are shown in
Figure 5.1(a).

The boundary conditions give

, =44 =0 n=0,1,2..,

We dbtain,
forn =0 m=1,2,3;

1
- -Luo+ ——l—ué = —lug-’r-——ul ——6—11‘2’
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1 14 1 1 10 1
- cut ?ug - -()—u; = g ult L +o8
1 14 1 1 10 ;1
- —6 ll;-'- —6—u§— -E—U‘: = —6—u2+—6—u§+-6—u2
which may be written as
Au' = b},
where
L
6 6 0
u
-— i .li — ...1._ 1 1
A=177% 6 6 (W= .
ul
o _1 1 ’
L 6 6 |
[ 1 —
——(10+
6\/2( V72)
1 —
b 6\/2( v72)
1 —_
—— +10
L6vz V2T
Solving, we get
al = A-pt
where
195 14 1
3
-l —
ATl = 1358 14 196 14
1 14 1951
or ul = .6412843
ul = .9069129

u} = .6412843
The matrix A does not depend upon n and we determine the column vector
b", n= 1,2, ... to find the corresponding solution vector u*, n = 1,2, ... .
5.3 5 Multilevel implicit difference schemes
We choose »
Fp) = (=747 0 (pet7p?)



274 NUMERICAL SOLUTIONS
(i) The values y; = 0 and y, = 0 give the formula
(V,+—;— v )u,’.'.*‘ = réutt

which may be called the Richtmyer formula.
(ii) For y; = 0, y, = —1/4, we get tLe formula

(vt 572 Jumt = rag(l— 73 )t

(iii) Substituting the values ¥, = 1 and y2 > 1/4 in (5.80), we get the
formula

1 _,
( V.- S Vi )u,',’,‘“ = rsf('}'zu,',’,'”'i-( 1 '—21’2)"$+72“:n_])

which for y; = 1/3 may be called the Douglas-Gunn formula.
) (iv) The values ¥, = ¥1/2 and ¥, < 1 give an unconditionally stable method.

(@) ['g“ —m-r(l' ”;“71 )32 ] Ut = 21—y,

1 1
~[(=7)-

(b) For y, = 1—1/2r, we get the formula
1 1 2
[+ - (14 5) 8w = 2w

SISERE (R P, P

(v) The values 6 = 1/12, y, = (1/2)y, y1 = 1—1/2r give high accuracy
formula of 0(k2+h%)

[(-%—-i' :;_lr—)-*- (Tli(%-l- 2—lr)—r(—;—+ %))sg]u:'ﬂ
- Hoo)a ) (-4
(1 %)) )

(vi) The values Y1 = 1/2, v, = —1/12 give the conditionally stable formula
(0 < r < 3/2) which is the Adams-Moulton type method

1
pugtt = r82 (1= 37— 712 Jug
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(vii) For ¥, = 1 and y; = /6, we obtain the Milne type method
1 1
(V.— 5V )u',',.“ = r8 (1 -t P! )u.':,“

of order of accuracy (k*+hA?) which is unstable.
Further, we choose

Flpy = (1 +§E (= 19,0 ﬂé. 7o P2+ (5.85)

with 7, and ¥, arbitrary.

The difference scheme (5.36) with F(P,) given by (5.85) has the truncation
error of 0(k-+h?) for arbitrary ,, 7, and o. Substituting p; = (1-E;'), we
find that (5.36) represents (g-2)-level difference scheme if ¢ = s and (s+1)-
level scheme if g+1 < s. There are g+s arbitrary parameters on the left
hand side of (5.36) and we expect to be able to choose 7,'s and y,’s so that
the scheme (5.36) has order of accuracy 0(k?+*) in time variable. The Pad¢
approximations to [—log (1—p,)] for 0 < g < 3and 0 < s < 2 are given
in Table 5.2.

For example the values g=2, s=0 give four level implicit unconditionally
stable scheme

(Pt +5 72 Justt = rizue

The conditionally stable difference schemes of the Adams-Moulton type can
also be obtained if we put 7, = 0, 1 < p< ¢. We find ’

1

1 1
(1+083)paupt! = "83;(1 —5 Ve ﬁVf T g )u’,',,+l

where o < —‘1‘—
5.3.6 Implicit difference schemes for the diffusion
convection equation
The general two level implicit difference scheme when the first order spatial

derivative in (5.60) is approximated by the mean-central differences may be
written as

Pt = % 83(0u::.+‘+(1 -01)u'.'-)— 9—',—:— uxS,(Ou:,+'+(l —0)up, ) (5.86)

where 0 < 6,0 < 1.
The values 8 = 6, =1 give the fully implicit difference scheme which on
simplification becomes

u;'+l - u,:+r(u,',',tll—2u"".+l +"l:t})_rk(”:,t'|—",:',ti) (5.87)
where r= hl_c; andR=g,7':
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where R = [—o0 < x < oo] X[t > 0] and f(x) is a known function.
(i) initial and Dirichlet conditions
u(x,0) =f(x),a < x<b
u(a,t) =g(t),t> 0
ulb, t) = h(t),t > 0 (5.94)

‘where R = [a < x < b]X[0, T] and f(x), g(r) and h(t) are known functions.
(iii) initial and the mixed boundary conditions

ulx, 0) =f(x),a < x<b

d
%—pu =¢(t)y, x =a,t >0

= 80, % = byt > 0 (5.95)

where R = [a < x < b]x[0, T], p and ¢ are assumed as constants. The
functions ¢,(¢), ¢.(f) are continuous and bounded as ¢t -> oo and there are.
no discontinuities in the initial or boundary conditions, or at the corners of
Q. For the values P = q = 0, we get the Neumann conditions.

We now illustrate the application of the explicit and the implicit difference
schemes in solving the heat flow equation (5.33) together with the appropriatc -
initial and boundary conditions.

5.4.1 The initial value problem
The nodal points are formed by the points of intersection between the
two families of parallel lines

Xm = mh,m =0, 1, 42, ...

th=mnk, n=0,1,2, ... (5.96)
The initial condition (5.93) can be replaced by the conditions
u(xm, 0) = 1l = f(mh) = fum,m = 0, +1, +2,... (5.97)

The use of the two level explicit difference scheme (5.38) involves the solu-
tion of the following difference equations:

Ut = (1= 2r)uly A r(uls_ -l sy (5.98)

Uy = fom, m=0,£l1, +2, ...,
n=0,1,2,...

Choosing r, 0 < r < 1/2, the values of the solution at the nodes on the first
level, i.e. o}, (m = 0, 1, £2, ...) are known from the initial conditions
and it is easy to calculate u2 from the first level and so an. If we know the
values u}(m = 0, &1, 42, ...) then the application of a three level explicit
difference scheme is straightforward like the two level explicit difference
scheme. The application of the implicit method to (5.33) subject to (5.93)
will involve the solution of the infinite set of equations.
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5.4.2 The initial Dirichlet boundary value problem
The nodal points (m, n) of the region R are given by .

Xp = a+mh,m=0,1,2, ..., M, Mh = b—a, (5.99)
t, = nk, k=0,1,2,..., NNc=T
Firstly, if we use (5.38), we arrive at the following difference cquations:
witt = (1= 20k r(uf_y ) 1< m < M1
n=20,1,2,..N, (5.100)
u(xm, 0) = S, = f(xn) = fm, 0 < m <M

ula, ts) = uy = g(ts) =g\ n>0

u(b, ta) = uy = h(ts) = by n > 0 (5.101)
Substituting # = 0 in (5.100), we obtain
ul, = (1 =2r)u+r(uf,_ ) (5.102)

Since the values 1%(0 < m < M) are known. from the initial condition

" in (5.101), we can use (5.102) to compute the values ul(1 < m < M-1)in

any order and the values u} and u}, are known from the boundary conditions
in (5.101). For n = 1 in (5.100) we get

uz = (1=2r)u, A r(u} T | (5.103)

From the values u!(1 < m < M—1) wecompute w1l <m< M-1)

from (5.103). The values u3 and u}, are given by (5.101). Thus we repeat the

steps to advance in the time direction by taking n = 2 and so forth.
The difference equations (5.100) may also be written as

wtl =ruy  +(1—2r)uftru;

wt! = +(1-2ruy g

urtl, = ruf,_,+(1 —2r)uly_,trunsy

undl = rufy_,+(1=2r)up,_ truy (5.104)
which in matrix notation becomes
Wt = [I4+rClu"+rb", . n=20,1,2 .. (5.105)
where w o= [uug . uhy_ 15 s=n,n+l
-2 1 'l
Mg
8 1 -2 1
0 . . .
W= and €= e (5.106)
0 e . . .
. 1 -2 1
L »
L 1 -2
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m=1, u = -:1;—(u“’,+u°+ug)
=—% +l/—§+ )=o.7887
m=2u = -%— @+ ud+ud)
- _;_(_\12_3_+ _;_) = 0.4553
n= l,u,z,,——:l;—( l—i—u'-}-u,,ﬂ,l) 0os<m<2
m= 0,1 = + (uFultu) = 3 5 (bt 2ul)
1

== (0 9107+2x0.7887) = 0.8294
m=1,u} = —3— (ul4-ul+u)

= —1-(0.9107+0.7887+0.4553) = 0.7182
m=2,ul = —:1;— (u}+ul+ul)

1 L (0.7887+0.4553) = 0.4147

The DuFort-Frankel method, for r = 1/3 becomes
untl = —;-u;,';"+ -—i— up_, +ul ), 0 <m< 2

n=12,.
Here we need another method to start the computatlon The Schmldt method

is used for the first time step.
We have,

n=1, = 2y +h ), 0 S m <2

m=0, 1 = -5 g+ 2t +u}) = £+ 4u

-%-(l +4%0.7887) = 0.8310

= (2 u)

3
I
5
|

(\/3 +2(0.9107+40.455 3)) 0.7196
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m=2, i = g+ 2ui+uh) = - (8 + 2u}
= l( +2x0.7887) = 0.4155

The Crank-Nicolson method, for r = —31— becomes

—p 8 —unt = Auntun,, 0<m<2
n=0,1,2,..
We have;

n=0,—u, , +8ul,—ul , =ul_ +4ud+u,
m= 0, —yu! l+8u‘—u‘ = u® +4ud+u}
m=1, —u}+8ul —u} = ud+40+ul
m =2, —ul+8uj—ul = u+4u+u
which may be written as

8 =2 o0 ul 5.7311
-1 8 -1 W | =] 49641
0 -1 8 u) 2.3660
or uy = 09125 u} = 0.7838 ul = 0.3937

n=1, —ul_ +8u—u}, = m-—l+4ul+lm+l
m=0 -u? +8ul-u?=u' +4ultu
m=1 —ul+8ul—u? = ul+4ul+u}
m =2 —ul+8ui-ul= ul+4ul+u}

which may be written as

8§ -2 0 u2 5.2176
-1 8 -1 2| =| 44414
0 -1 8 2 2.3586

or
u} = 0.8579 u? = 0.7067 ,2 = 0.3832

5.4.3 The initial mixed boundary value problem
The difference scheme used to solve this problem is the Crank-Nicolson
formula

—rupt 1 2(1+runtt —ruptt = pyr 2= Arun
m=20,1,2,.. M,

n=20,12, ... N (5.112)
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In the equation (5.112) when # = 0, the values of %, 0 < m < M are ob-
tained from the initial conditions. When m = 0, M, the values «* and
4y, (s = n, n+1) which occur in (5.112) are eliminated using the bound-
ary conditions (5.95).

The derivatives in the boundary conditions (5.95) are approximated by
the equation

du\*
(35),, = 35 @~ m = 0,21

where s = n, n-+1.
On simplification, we obtain the discrete analogue of the boundary con-
ditions as
u® | = ui—2hpu;—2hd;
Wy = Wyy_, —2hqui,+2hd; (5.113)
If we use (5.113) into (5.112) when m = 0 and M, we may write the totality
of difference equations in the form

(I+ .% Q)u”‘“ = ([— -g Q )u"+rh¢ _ (5.114)
where Q is a M+1X M-+1 matrix
[ 2+42hp -2 7
-1 2 ~1
Q=
-1 2 -1
L -2 2+2hq |
and U (- OETHE P o

$ = [+ +¢m 0 ... (FpH +eyI
The tridiagonal system (5.114) can again be solved by the method discussed
in Section 4.3.3. '

5.4.4 Results from computation
We have solved the differential equation (5.33) subject to the initial and
boundary conditions

o™
u=cosix,—1<x<l,t=0

, u=20, x=41, ¢>0 (5.115)
The theoretical solution is given by

m

u(x, t) = exp (—nit/4) cos 5 x
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For the purpose of comparison we have solved this problem with the help

of a number of explicit and implicit methods. The values of the maximum

absolute error E = max | u—u(xm, ta) | at 1 = % have been determined
m R .

for varioué values of r and these are listed in Tables 5.3-5.5.

TABLE 5.3 THE VALUES OF 10° X E AT ¢ = 0.32 FOR THE PROBLEM (5.33,)'wm1
INITIAL BOUNDARY CONDITIONS (5.115) AND METHOD (5.84 iv a)

‘ 3 2 1
’ hir, T 3 E) 0
’1‘16 0.7375 0.7372 07370 07368
1
8 -
l N
® 0.1843 0.1843 0.1843 0.1843
‘ﬁ‘b‘ 07389 0.7384 0.7379 0.7374
1 |
3
1% 0.1844 0.1844 0.1843 0.1843
’110 0.7447 0.7430 0.7413 0.7396
.l_ . v
4 . .
» e ewa
| s 0.7559 0.7519
i
3
1 e L :
56 0.1855 . -9,1852
5 07999 07866 - 07132 0797
1 P
1 .
316 0.1882 0.1874 0.1866 0.1857
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Fig. 5.6 Stability and accuracy region for the implicit methods (5.84 iv a)

The comparison of the explicit methods is given in Table 5.5. If r < 1/2
andif 7 = 1/12 belongs to the interval 7/2 < 1 < 1/4, then the Hadjidimos
method gives better results in comparison to the Schmidt method and the
DuFort-Frankel method. For r = 1/6, the Schmidt method gives best results
as it is then equivalent to the Crandall method of 0(h*).

In conclusion, we may summarize as follows:

(i) The implicit method (5.84a, b) gives more accurate results as compar-
ed to the other implicit methods of 0(k-+-4?) or (k2+h3).

(ii) It is found that the accuracy with respect to time variable is of second-
ary importance while the accuracy with respect to the space variable is
essential. Thus, the Crandall method produces the best results among
all the implicit methods.

5.5 STABILITY ANALYSIS AND CONVERGENCE OF
DIFFERENCE SCHEMES

The analytical solution u(xm, ta) of the differential equation, the difference
solution u”, of the difference equation and the numerical solution #* can be
related by a relation of the form

| texm, )= 8% | < | e, t) = | + | 03—, | (5.116)
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In practice we would like the difference between the analytical and the numeri-

‘cal solution to be small. From {5.116), we find that this difference depends
on the values | u(xm, ta)—u7, | and | u®,—a” | . The value | u(xm, tn)—u? |
is the truncation error which arises because the differential equation is
replaced by the difference equation. For a convergent difference scheme the
truncation error converges to zero as 4 and k both approach zero. The numeri-
cal error | u® — " | arises because in actual computation we cannot construct
the difference solution exactly as we are faced with the round-off errors. In
fact, in some cases the numerical solution may differ considerably from the
difference solution. If the difference equation is stable, the second term in
(5.116) practically equals zero. Thus, the results of the convergent and
stable method are very close to the analytical values.

- 5.5.1 Matrix stability analysis

Assuming periodic initial data and neglecting the boundary conditions,
‘we have used the von Neumann method to determine the stability of the
difference schemes. We now apply the matrix method which automatically
takes into account the boundary conditions of the problem, to difference

schemes for the stability analysis.
From equation (5.111), the two level difference scheme may be written as
Agu"t! = A u"+b" (5.117)
where b* contains boundary conditions and | Ag | # 0. For 4, = I, the
difference scheme (5.117) will be an explicit scheme otherwise an implicit
scheme. We now assume that an error is introduced by round-off or some
other source into the solution u? and call it u?. Then, we calculate furth.y

using (5.117) to determine u?*!, ..., u™*!. The resulting equations become
At = A ut4be
Aquet? = At pett

At = Arb" n>q (5.118)
Subtracting (5.117) from the last equation in (5.118), we get
At = g€ (5.119)

where u"—u" = €” is the numerical error vector. We note that (5.119) is
nothing more than the homogeneous equation corresponding to (5.117). We
take g = 0 which amounts to assuming the introduction of the error in the
initial data. '

In the stability anylysis by the matrix method, we determine the condi-
tions under which the value of the numerical error vector

: e || = |l u"—u" | (5.120)
where || - || denotes a suitable norm, remains bounded as 1 increases indefini-
“tely, with k remaining fixed.
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@+l = aGe" (1 —2a)em! (5.129)
where G =214C,
which can be rewritten as k
' Ett = HE" (5.130)

where E” is the 2M —2-dimensional vector [€"*! €] and H is the 2M —2
X 2M — 2 matrix

[~ 2« G (1-=20)1 ]
H=

L I -0
The eigenvalues of H are those of

[ av; 1-2a

1 0 :l '
i.e., the roots of the quadratic equation

N—ayd=(1—20) =0 (5.131)
where v; is the eigenvalue of G and

s =2cos§Mf—,l <s< M-1

We consider
R-2adcos p—14+2¢ =0,0< p <7
and for stability we have
M| <1and [A] <1
If the roots are complex then they are equal in magnitude and
A =vIA=-20/(1+2r] < 1
For real roots, we obtain
N = acos ¢+ (22 cos? ¢+1—20)
Since, 0O<op<ma>0
4/ (@ cos? ¢+ 1—2a) = [(1—a cos ¢)2—2a (1—cos $)]'/
< (1=—a cos- ¢),

it follows that | A, | < 1.
Hence the DuFort-Frankel scheme is unconditionally stable. In a similar
manner, the error equation corresponding to the Richardson scheme (5.108)

can be expressed as
et = 2 C en+-éu-—l

or as (5.130) where H is given by

[2rC I]
H=|-
| 0



